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Discrete difference equations in Minkowski space are obtained and the discrete 
Minkowski force is shown to be a four-vector. A transformation from a discrete 
dynamical equation in Minkowski space to a Lorentz-invariant difference equa- 
tion in one-dimensional space is given. 

1. INTRODUCTION 

The development of modem digital computers has led to special 
approaches to many mathematical and physical problems. The replacement 
of derivatives by differences is a common method for the solution of 
problems in mechanics. Discrete Newtonian and relativistic mechanics have 
been developed especially by D. Greenspan (1974, 1976, 1977). He presents, 
among other things, a purely arithmetical approach to elements of special 
relativity theory (1976, 1977). 

As is well known, in continuous special relativity the basic equation 

c2m (Iv 

F -  c2 _ v  2 dt (1) 

is not invariant under Lorentz transformation in more than one-dimensional 
space. The analogous situation takes place with adequate discrete equation 
given by D. Greenspan (1976, 1977). In connection with this, the dynamical 
relativistic equations are formulated in Minkowski space (Aharoni, 1959; 
Bergman, 1942; Muirhead, 1973; MOiler, 1973; Schwartz, 1968). 

In this paper, a class of discrete dynamical equations in Minkowski 
space is obtained. Moreover, it is proved that the discrete Minkowski force 
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is, as in the continuous case, a four-vector. Finally, on the basis of discrete 
mechanics, the transformation from a difference relativistic equation in 
Minkowski space to the above-mentioned Lorentz-invariant Greenspan 
equation in one-dimensional space is presented. 

2. BASIC CONCEPTS 

Let us assume that the location of particle P at moment t k is given by 
the rectangular coordinates Xtk ----xt(tk); k=0,  1,2,... ; l=  1,2,3; and let the 
particle P have velocity v k =[v~k, v2g , Vak ]. Let velocity and location be 
related by the following difference equations: 

AXlk 
Vtk - -  At/,  (2) 

where the symbol A represents a forward difference operator defined by 

A A  k = A k +  1 - - A  k (3) 

for arbitrary quantity A. Moreover, let us define Yk by 

y k = ( 1 - - V 2 / C 2 )  1/2 (4) 

where v 2 V2k 2 2 = + VEk + V3k and c denotes the velocity of light. In analogy to 
the continuous case (Bergman, 1942; Aharoni, 1959) we define the proper 
time by 

8~'k =ykAtk (5) 

and the momentum-energy vector Pk ----[Plk, P2k, P3k, P4k], where 

and 

_ fmkVlk  , for l=1 ,2 ,3  
P~k--~iEk/c, f o r l = 4  (6) 

m k = m o / Y  k (7) 

Here, E k =mk c2 denotes the energy of P at tk, m o is the rest mass, and 
i = f = l .  
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As is known, the relativistic dynamical equations in the continuous case 
are given by (Aharoni, 1959; Bergman, 1942; MOiler, 1972; Muirhead, 1973; 
Schwartz, 1968) 

Ft = dp, _ 1 dPt l = 1,2, 3,4 (8) 
d, (1-v:/c2) 1/2 dt ' 

The replacement of derivatives in the above equations by differences yields 

1 Aplk 
Fzk--3'k Atk ' l=1 ,2 ,3 ,4  (9) 

Finally, let us define discrete Minkowski coordinates, velocity and accelera- 
tion of P by 

=~x/k,  for l=1 ,2 ,3  
Xlk [ ictk, for l = 4 (10) 

zX x~k 
v,~- 8~ (11) 

zxvtk 
A~-  8~ (12) 

3. DISCRETE DYNAMICAL EQUATIONS IN MINKOWSKI 
SPACE 

In this section we will give the discrete dynamical equations in 
Minkowski space, relying upon the definitions given in the previous section 
and upon the obvious properties of the operator A: 

~Bk AA k +Ak+IABk 
A(AkBk)=lBk+lAAk +AkABk (13) 

where A and B denote arbitrary quantities. 
From (9), (6), and (13) we have for l=  1,2,3 

t 
Am k AVlk 

F, = 1  - - ~  Vlk + mk+l At k 
or (14) 

lk y~ Amk AVxk 
-~k  l)l, k+l-'~- mk At k 
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Let us take into account the first of the above alternatives. From (5), (2)~ 
(I 1), and (I3) we obtain 

_- 

Using (12), from (15) we have 

+ A~% m~+t~ ' (16) 

~k =Tk+lmk+lAlk 4 ~'k ' 

The analogous procedure with the second alternative (14) yields 

A(~kmk) 
&=~'kmk~,k+ ~*k E,k+~ (18) 

Ay~ m, V Ek ='t~+lmk&k + ~ ~ zk 

Amk I7,, k+l + - G - r k + ,  ,, ( |9)  

Now we give the difference equations for l=4. From (6) and (9) we have 

G~ =icamk/8% 

=ic - mk+------~l ~u mk+t ATk + 

=ic( -~-kmk+l AYk3'kYk+, ~rk -~ 'kAmkyk 8% +mk+l  A'&}Yk+, 8 "  

ic Ay~ , ic Am~ 
_ _ .-.Ty/--&r ~ k  "t k rn k + I "t  

~k )tk + l Yk k 

ic Agk 
"gk+ 1 rtlk+ I ~'rk 
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Considering (12), (11), and (10), we obtain from this equation 

Amk AYk 
F4k =A4k'gkmk + 1 + V4k'Yk ~ -~- V 4 , k +  l m k +  ! 

6~- k t, , k 
(20) 

But the above equation is analogous to (16). In the same way we obtain for 
l = 4  equations of the form (17), (18), and (19). Therefore, taking into 
consideration that m kYk = m 0, we may write 

A m k  Tr - -  A Y k  . ,  
FI~ =Ykrnk+,Atk + ~ Y k V ' k  • ~ m k + , v , , k + ~  

Am 0 
6 2 =moAzk + ~ V~k 

Am o 
6 3 =moA,k  + ~ Vl'k+' 

, A'~ k .~ A m  k 
F4='?k+,mkA,k • +--~Tk Vk+,V+,~+, (21) 

On the other hand F t ~ -  2 -- Flk = r,~ - F 4 - tk, so that 

4 4 

Flk = ~ 0;iFt~, where ~ a i = 1, 
i=1 i : 1  

/ =  1,2,3,4; k = 0 ,  1,2 . . . .  (22) 

The formula (22) presents 
Minkowski space obtained 
0;1 =0;3 =0;4 = 0  w e  h a v e  

the general discrete dynamical equation in 
from (9). Let us note that for 0;2=1 and 

Ftk =moAlk  + ( Amo /3$  k ) Vtk 

This formula is analogous to the continuous formula (Aharoni, 1959; 
Bergman, 1942) 

dV1 dm o 
mo-y7  + (23) 

Note moreover that for 0; 2 =0;3 ~_1 and 0;1 =0;4 =0  we obtain 

FN = C2gFl k A l ) k  

(c2 v ),/2(c2 ,,/2 
- -  l?k+l)  

(24) 
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D. Greenspan (1976, 1977) assumed in Minkowski space the dynamical 
equations of the form 

Am~ Vt' k+l + V/k (25) 
Ftk =m~ dr k 2 

where the proper time is defined by 

3rk = Atk( c 2 --Vk "~ 1/2 

The equations (25) and (24) are similar except for the sign between the 
terms. We see that (24) is more coherent with the continuous equation (23) 
than (25). 

4. DISCRETE MINKOWSKI FORCE AS FOUR-VECTOR 

Consider two Euclidean coordinate systems X I X 2 X  3 and X~X~X~, 
where X~X~X] is in constant uniform motion with respect to X I X 2 X  3, and 
let us take into account two events (xl, x2, x3, t) and (x'l, x~, x~, t'). An 
arbitrary vector A is called a four-vector if 

A ' = L . A  (26) 

where L denotes the Lorentz transformation given by 

L =  

1 2 /32 82 E2 
+i l l  e + l  fllfl2 e-+ l fllfl3 e+ l iflle 

E 2 82 g 2 
BI j~2 ~--~ 1 q-B 2 B2]~3 ifl2e 2 e + l  e + l  

82 e 2 
f l l f l 3 " ~ l  1 fl2fl3 eq_ 1 lq-fl  23eq_ le2 ifl3e 

--iflle --iflEe --iflae e 

(27) 

and 

1 fl2 u 2 ui e= fli = - -  i =  1,2,3. (28) 
( l__f12)l /2 '  C 2 '  r ' 

In (28) u denotes the velocity of X~X~X~ with respect to the X1X2X 3. Note 
that both V~ =[Vlk, V2k, V3k, V4k] and A k =[Alk,  A2k, A3k, A4k ] are Lorentz 
invariant, since 3r~, is invariant under this transformation. 
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Now, let us show that the momentum-energy vector (6) is a four-vector. 
From (2), (7), (5), (4) we have 

rn o A x'lk 
% At; 

m'kVlk ] mo AX'gk 
rn'kv'Ek l___ "/; At; 

mZv'3k I m 0 AX'3k 
icrn~ ] v'k at; 

mO. -SS-.~ lC 
Yk 

hx'~k 
m~ ~'k 

A x'2k 
m~ 8"r~ 

Ax;k 
m o ~ ,1. k 

A(ictl) 
mo ~,rk 

mO~k 

: m o ~ k  

mO~k 

mO~k 

=g./mor2 / 
/moV3k/ 
LmoV4k I 

mkl) lk ] 
I mkV2k I 

. . . . .  L[mkv3k I 
L icmk J 

and the invariance is established. Hence 

~( m'~v'lk ) ] 
a(m~vik) ] = L -  

a( m'~v;~ ) 
A( icm'k ) 

A(mkvtk)  

~X( m ~v~ ) 
A(icmk) 

Since 6~'k is Lorentz invariant, the equation (29) implies at once 

(29) 

~; =L-ek (30) 
This means that the discrete Minkowski force is the four-vector. 

5. DIFFERENCE DYNAMICAL EQUATION IN 
ONE-DIMENSIONAL SPACE 

In continuous relativistic mechanics there exists a simple transforma- 
tion from the dynamical equation (23) in Minkowski space to the classical 
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relativistic equation (1), which can be written 

d 
F= ~ (mv) (31) 

Denoting the Minkowski force (23) by F ~t and the force (31) by F u we have 

1 FM= F N 
(1 -vVc2  ) '/2 

However, in the discrete case we cannot write, by analogy, Fff =3'g F~ t, since 
Fff could not be invariant under Lorentz transformation. So we are going to 
find another factor instead of 7k- For this purpose, let us transform first the 
quantity "/=(1--V2/C2)1/2: 

y =  
c2T _ c27 _ 1 

/32 q- r -- I)2 132 q-r 2 ~(V2/C2T2 q- 1) 

m m 

3~(mve/cET 2 +m) 7[(dm/dv)v+m] 

or  

m (32) 
= Td(mv )/dv 

By analogy to (32), we define the factor sought by 

Fk= mk (33) 
2/k+ 1A(m~vk)/Av k 

Now we show that FkF~=F ff and Fff=F~ N. From (9), (33), and (4) we 
have 

1 A(mkvk) rkey=r v  
mkAV k 1 A(mkVk) 

= T k + l A ( m k V l ~ )  "Y/r A t  k 

m k AV  k 
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o r  

c2mk Ark (34) r2= 
(C2 2' 1/2[ 2 2 ]1/2 Ark 

- - / )k )  t c --I)k+ 1 \ ] 

The invariance of the above equation under Lorentz transformation was 
proved by D. Greenspan (1976, 1977). 

Note that in the limit (34) yields the classical equation (1). Finally, let 
us draw the formula (33) in Minkowski coordinates. For this purpose let us 
rewrite F k as follows: 

F k = mkAVk (35) 
[ Amkvl, + mk+ 1Avk 

2r or 
LVk+lAmk +mkAVk 

Proceeding as in Section 3 yields from (35), (2), (5), (11), (12), (13), and (21) 

r2- F~-a~ 
Yk+ 1F2 

r~- Fe-ak 
Yk+lF~ 

rl -  Fd-ak 
F 3 Yk+l k 

r2- Fe-ak 
2/k+l/;4 

where 

Am k 
a k ~- "-~--k ~/k+ 1gk+ 1 

- -  2 - -  3 - -  4 .  On the other hand F~ - F [  - r ~  -F~ ,  then we may write 

(36) 

4 4 

Fk = E fliF~, where E Bi = 1 (37) 
i=I  i= l  
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The formula (37) presents the general form of the factor F k in 
Minkowski coordinates. Hence and from (22) the equation (34) in these 
coordinates has the form (4)(4) 

Fk N :  ~ ~irk  ~ oliF/ 
i : 1  i : 1  
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